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Abstract

RISK SCORING CLASSIFICATION PERFORMANCE OPTIMIZATION

The primary purposes of binary classification is performance optimization since even

the slightest prediction improvements can have signification implications for each field

application. Finding the most effective separation of classes is the key success indicator

in how well each model performs. When modeling prediction fails, the data entry is

placed in either a false positive (incorrectly predicted) or negative (incorrectly failed to

predict) category. The consequences for failing to correctly categorize can range from

wasting resources and missed opportunities to serious harm caused in medical diagnoses.

Optimizing classification performance focuses on reducing misclassifications.

Improvements can be identified after applying metrics then in finding ways to increase

accuracy and reduce misclassification. Accuracy of classification and AUCROC, area

under the Receiver Operating curve, are the most commonly applied metrics, however

identifying insights into misclassification requires reviewing Type I and II error metrics.

Ensemble methods (bagging, boosting and stacking) are a creative means of resampling

and will be utilized to improve the performance of base learners in stacked models.
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The German and Australian credit risk scoring datasets were run through 9 diverse

algorithms, as well as adding bagging and boosting in ensemble stacked models based

on strong and weak learner correlations. The results were ranked based on the overall

optimal performance.

The Support Vector Machine (SVM) algorithm ranked best for both datasets with

no false positives and negatives. The stacked models were in 16 of the top 17 ranked

models, however the ranking of specific models was inconsistent. This study found that the

stacking ensemble premise did not have a clear delineation in performance improvement

in combining the weakest and strongest learners together, however stacking itself proved

very successful. The premise is that combining the weakest learners, least correlated,

should be more effective than the strong learners since they have the most to benefit from

reweighting for resampling that promotes the weakest and demotes the stronger learners

helping to focus on the weakest algorithms fixing their misclassifications.

The conclusion regarding model choice is that no assumptions could be made regarding

algorithm performance and that empirical testing is needed for model selection.

The key implication of optimizing classification performance is the reduction of mis-

classification errors and thereby enabling greater classification accuracy which translates

into gaining better insights from the risk score modeling process that can be effectively

prescribed back in an organization. One of the most important areas of future work con-

tinues to be finding solutions to class balancing which improve the quality of performance

metrics that are inherently skewed.

Keywords: business risk assessment, classification performance optimization, credit

risk scoring, risk scoring analytics
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CHAPTER 1

Introduction

The primary purpose of this study was to build a new risk scoring process. The

credit risk scoring methodology most closely matched the technical requirements and was

utilized as a statistical model prototype that quantified the prediction whether an event

may or may not occur.

The first credit scoring efforts were created out of necessity and were developed through

intuition and experience. Risk scoring was initially achieved manually before being au-

tomated through statistical and machine learning techniques which added fact based

decision making.

Risk scoring is a method to rate historical behavior enabling a business to make a

decision on whether to take an action from criteria that predicts when an event may

occur or may not occur. The credit risk example is that a loan will or will not be repaid.

A baseline hurdle rate of acceptable risk is linked to business tolerance. In credit risk

scoring applicants are rated in order to predict quality of repayment risk.

Business risk can be studied through behavior monitoring identifying inherent risk

(like death and car accidents) versus fraud or improper behavior (such as intrusion, delin-

quency, or account default) that can be controlled or mitigated as in a loan appraisal

process. Some risk categories include marketing, credit, collections, operating, insurance,

as well as fraud detection and prevention.
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Credit scoring methodology is implemented system wide by lending institutions and

therefore is an excellent source to research how other systems with similar requirements

can be defined and developed. Scoring is becoming of greater importance because of

increasing business rivalry locally, nationwide and globally, as well as the ever increasing

volume, velocity and variety of data to be managed. Scoring enables better fact based

decisions selecting between the favorable to the less or unfavorable which may help improve

the ranking of an organization in the competitive struggle.

Lending institutions rely on Credit Risk Analytics to determine the customer’s ability

to payback credit with the end result affecting the institution’s financial bottom line for

profit and loss. The modeling and scoring techniques adopted play a significant role in

decision making and subsequently the institution’s success or failure. If the applicant

which is a good risk but is denied, the institution has missed a revenue opportunity which

will go unnoticed unless the applicant selection process is monitored and measured. If

the bad risk applicant is approved, then there is the possibility of financial loss on the

loan, which is more expensive than the former missed opportunity. The failure to add

a revenue source is not as expensive as loss foregoing revenue and principal. Losses can

only be used against revenue sources for financial and taxation purposes and the tipping

point is the break-even point. Another issue is the threshold where approval and denial

are separated.

There are several phases of risk scoring in the banking industry. The first rates ap-

plicants on the likelihood to repay with a window that is a static point in time with

the process predicting on historical data available regarding an applicant’s credit history.

The second phase is called behavior monitoring which rates changes to the applicant’s
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behavior, after being approved for a loan, using a time series predictive analytics process.

A third application for the credit industry is collection monitoring which follows up re-

payment of defaulted loans. One or all of these long established methods may be useful

to new risk scoring methodologies.

Well-researched and implemented analytic techniques can be applied to new risk scor-

ing projects. Critical legal and business issues, regarding which algorithms to use in

institutional lending, apply similarly to assessing other risk areas. Regulatory and legal

hurdles may determine that more transparent and interpretable algorithms, such a lo-

gistic regression and trees, are selected over more advanced machine learning algorithms

since the latter are more difficult to understand and interpret. A primary focus of this

study is how to improve risk scoring methods by optimizing classification techniques and

reducing the risk of incorrect false positives or false negatives, in addition to ascertaining

more effective metrics to use given certain circumstances.

By predicting possible or probable events, they can be foreseen, prevented or steps

taken to mitigate potential damage by anticipating how the events should be handled. The

focus of this study is identifying metrics to improve optimization of a binary classifier, as

well as ranking models using these metrics for the purpose of model selection. Optimizing

helps to minimize failures to identify events or misclassify events.

Until the requirements for risk factors are identified and refined, no method can ensure

project performance improvement. The credit risk scoring application is an excellent

business and technical model for research but may give a false impression about the real

work needed to start a new risk scoring application. Until the business requirements

are written and iteratively tested and modified through to deployment with insight being
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brought back into the organization and assimilated, the metrics and models will not reach

full optimization.

1.1. Technical Risk Scoring Research

Credit risk history extends to the beginning of commerce (Louzada et al., 2016). The

stock market in the 1920’s and 1930’s required credit risk to be more quantified and

streamlined which modernized the process traced to Durand (Durand, 1941). Current

research uses automated decision models to quantify risks (Thomas et al., 2002). Today

the focus is on using predictive analytics to reduce customer defaults through statistical

methods (Abdou & Pointon, 2011). New technology enables better discovery of correla-

tions (Koh et al., 2006) and patterns in the data raising the quality of fact based decisions.

A premise for predictive modeling is that it can foretell the future from an applicant’s

behavioral history by monitoring changes over time (Koh et al., 2006).

Another important aspect of credit scoring is measuring expected earnings in connec-

tion to the probabilities related to default for an overall risk assessment model (Boyes et

al, 1989). This quantification effort is the foundation of a series of investigations required

by regulators of lending institutions since each entity needs to justify their lending strat-

egy and tactics as a part of their fiduciary responsibility. The econometric foundation of

this research is statistical and operational research using probability modeling employed

by a wide number of financial areas that are the basis for forecasting financial risk that

includes decisions before and after the credit has been approved (Thomas, 2000).

Updated risk scoring procedures include statistical and artificial intelligence techniques

(Wang et al, 2011), however there is no generally accepted model. There is interest in
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using ensemble techniques (specifically boosting, bagging and stacking) for the purpose

of finding improvements to existing models for Accuracy and Type I/II errors. Ensem-

ble methods are characterized as combining hypotheses (multiple learners) rather than

applying single hypothesis as in ordinary machine learning.

Figure 1.1. Predictive Analytics draws from many dissimilar overlapping
disciplines (Hall et al., 2014)

The use of predictive modeling automates the approval process that corrects the bias

(Crook 1996) in the previously employed judgmental techniques that relied primarily on

subjectivity and provides a legally defensible threshold for approval or denial of applica-

tions. Predictive analytics applies only the most significant variables whereas judgmental

techniques based on experience may bring in bias (Crook, 1996). Automated credit risk

scoring can introduce errors due to misclassification (Abdou & Pointon, 2011) which

means that issues with classification analysis are points of failure (Anderson, 2003). Fail-

ure to update credit risk specifications and historical data are also limitations in automat-

ing the process (Abdou & Pointon, 2011).
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There is evidence that the lenders performance and accuracy of risk assessment is

improved using credit score prediction (Avery et al, 2000), as well as to borrowers due

to the increased efficiency of the process that provides greater credit opportunities. The

supposition is that repayment history is the best indicator of future behavior. Although

weaknesses are found in how credit bureau scoring data is compiled across bureaus, lenders

use other information to make lending decisions. Overall automated systems that create

credit scores are better than using judgment alone.

An additional step, after approval, includes a follow-up process that rates the outcome

of the predictive model selected, which provides valuable feedback whether improvements

or changes are needed grounded on the actual outcome of customer repayments or delin-

quencies. The highest risk applicants are the ones that provide the greatest return on

investment but they also must be carefully selected since the potential losses include both

the interest revenue and principal which are mitigated through more accurately identifying

the probability of repayment (Hand & Henley, 1996).

The following list of algorithms used in risk scoring are a few examples from an ex-

tensive list of research papers on comparative analysis of modeling methods. Logistic

Regression has been included in most comparative modeling studies (Crook et al, 2005).

Bayesian and ID3 algorithms were compared favoring the Bayesian algorithm (Mady-

atmadia et al., 2005). Other techniques studied include "weight of evidence measure,

regression analysis, discriminant analysis, probit analysis, logistic regression, linear pro-

gramming, Cox’s proportional hazard model, support vector machines, decision trees,

neural networks, k-nearest-neighbour, genetic algorithms and genetic programming" (Ab-

dou & Pointon, 2011). Recently Deep Learning is being applied to credit risk scoring
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taking advantage of leveraging the Deep Belief Network added to the Neural Network

algorithm (Luo et al, 2016).

In "A comparative assessment of ensemble learning for credit scoring" (Wang et al,

2011), four base learners (LRA, DT, ANN and SVM) were tested using bagging, boosting

and stacked ensemble models. Bagging performed better than boosting with stacking and

bagging DT improving more based on classification metrics.

An updated list of modeling techniques adds fuzzy logic (Louzada et al., 2016) with

accuracy, sensitivity, specificity, precision and recall, with false positive and false negative

rates as a classification metrics. The study included 187 papers of which 51.3% studied

proposed new credit scoring methods, 20% were hybrid models, 15% were on combined

models, and 13% being neural networks with the rest having less than 10% representation.

For credit scoring specifically, the most common techniques are hybrid and combined

techniques, support vector machines at 17.6% and neural networks 20.6%, with linear

discriminant analysis rarely used at 1.7%. The two most relevant preprocessing techniques

of model selection were missing data procedures with the k-fold and holdout methods the

most common validation techniques.

There is no consensus or best practices for variable selection, models selected, vali-

dation techniques, or cut off points on which predictive analytic processes are optimal

with the exception to the application of the confusion matrix or classification table with

metrics such as the Receiver Operating Curve (ROC), and the Gini Coefficient which are

the widely utilized (Abdou & Pointon, 2011).
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1.2. Risk Assessment

Risk scoring is not a goal itself. It is a predictive analytics project that solves a business

problem. The credit card dataset used in this study has been refined over a period of

time and conforms to the risk associated with credit default and creditworthiness. New

risk scoring projects undergo iterative phases of identifying risk factors associated with

the business requirements that will be mapped to the response and predictor variables

included in the representative dataset to be used.

The initial project requires a thorough risk assessment and analysis that will result in

the selection of variables to use in the risk scoring process which are also combined into a

risk history variable that is similar to the credit risk history variable. The assessment pro-

cess identifies, analyzes, and evaluates how to control risks helping the business calculate

their risk exposure and tolerance. The dataset attributes are selected to measure the risk

factors identified. The insight gained in the assessment process is then added back into

the project iteratively updating the variable selection while ranking variable importance

to the known risk exposures, as well as updating and calibrating the risk history vari-

able values and risk scorecard. Risk needs to be quantified and managed to make better

decisions regarding risk exposures (Koh et al., 2006). The initial risk assessment and

evaluation process should include strategies to manage the ’what happens next’ scenario

when the potential risk evolves into an event (Siddidi, 2006). Examples in following up

risk assessment in lending institutions can provide process road maps for new risk scor-

ing projects. They include foreclosure of loans, write-off principal and interest revenue,

repossession, the effects that consumer or business bankruptcy, and court judgments will
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have on the institution. Prescribing insights back into an organization is then measured

through metrics checking for changes and improvements.

1.3. Machine Learning Algorithms

The response variable determines whether regression or classification algorithms are

applied which are numeric or categorical respectively. Classification methods measure

whether an event may occur or not occur. Regression methods can also be applied to

quantify the value of potential loss. This study focuses primarily on the optimization

of binary classification methods and uses the credit risk example referencing applicant

loan approval based on the binary credit risk variable indicating whether an applicant

will default on a loan which is a bad risk or repay a loan representing a good credit risk.

Improvement of classification depends on constant recalibration in all areas including

whether the strategic goals are being met and reapplied effectively into the organization.

Some classification algorithms that were considered for inclusion are displayed in this

graphic (Brownlee, 2015); see figure 1.2.

Figure 1.2. Classification algorithms
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CHAPTER 2

Methodology

2.1. Data and the Environment

Two datasets with credit card scoring data were used in this study; the German Credit

(1000 entries 30/70 split for bad versus good credit) and Australian (690 entries with 307

goods and 383 bads) datasets. The source of the datasets is the University of California

at Irvine (UCI) Machine Learning Repository (Lopes et all, 2010). The bad entries were

classified as the event having occurred.

There were no missing values in either dataset which had previously been imputed

using median values. Each dataset was already in a numeric version having the binary

and categorical variables converted to discrete variables. The German Credit age, amount

of loan, and duration of loan variables were binned. The Australian Credit variables were

not distinquished by names and are identified in order of appearance in the dataset as

binary(x), continous(x), and categorical(x) to binary(n), continous(n), and categorical(n).

Since context was not provided, binning was not possible because the each bin is based

on the meaning and purpose of the variable.

Variable selection was completed in two steps. The first step was a bivariate correla-

tion analysis comparing each predictor to each other eliminating one variable of the pairs

if the correlation was greater than 75 percent. No variables in either dataset was elimi-

nated at this stage. The second step used Recursive Feature Elimination (rfe) with the
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randomForest (rfFuncs) predefined function, from the caret library for variable selection.

The rfFuncs function considers all variables in each iteration or resample from which the

top three variables were selected. Binary2, continuous4 and continuous7 were selected

for the Australian set with checking account balance, credit history and savings account

balance selected for the German set; see Appendies B and C for a complete list of the

dataset variables.

Centering and scaling of predictors displayed the most interesting EDA relationships.

The reason for centering and scaling of data is that the units for the predictors need to

be similar for a reasonable interpretation of their association to the response variable.

Standardization normalizes the distribution of the predictors ensuring comparability; see

figure 2.1.

Figure 2.1. High and low correlations with predictor means for each dataset

Note that the standardized mean is higher than without center and scaling for both

datasets. Means closer to 1.0 have a normal distribution. The caret library of wrapper

functions, introduced later in section 2.4 Technical Issues on page 31, enables preprocess-

ing with centering and scaling. Without including standardization of the predictors, the

results of the predictions would not have as reasonable an interpretation.
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The development Windows 10 environment included RStudio with R version 3.4.1, as

well as accessing the H2o (H2O.ai Team, 2016) client through an R localhost for the Deep

Learning modeling. Parallel processing was enabled with the R doParallel library.

2.2. Modeling Methods

The following list of diverse algorithms was selected after conducting a survey of the

most efficient risk scoring algorithms from which a single model will be selected based on

the best ranking measured by a list of metrics.

Figure 2.2. Classification algorithms included in study

The list includes 6 base models (base learners) and 3 ensemble methods (bagging

and boosting). Furthermore sixteen stacked models will be developed after assessing the

strong and weak correlations of the base learners.
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2.3. Model algorithms

2.3.1. Logistic Regression

In a linear regression equation for credit risk, the binary classification response y indicates

that a loan defaulted (event = 1 occurred) or was paid back (event = 0 didn’t occur).

Y =b0+b1X1+bnXn+e(2.1)

The relationship of the response to the predictors is a discrete relationship that is not

useful; see figure 2.3. A way is needed to transform the response y to a probability between

Figure 2.3. Linear regression equation (Ray, 2015a)

0 and 1 while making the relationship between the response and predictors meaningful.

This is accomplished with the logit link function using log transformation converting

the y response discrete values of 0 and 1 into event probability results that connect
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significantly to the predictors; see the transformation in the sigmoid S curve in figure 2.4.

Probability=(eventoccurred)/(eventdidn′toccur) = p/(1-p)(2.2)

Logit(p)=p/(1-p)=e(β0+ β1X1)(2.3)

Y = e(β0+ β1X1) / ( 1 + e(β0+ β1X1))(2.4)

The result of the logistic regression equation is to predict the probability whether an

Figure 2.4. Linear regression equation transformed using the logit link

applicant will likely default or repay a loan which displays a conversion legend for classi-

fication matrix decisions demonstrating how the logistic regression prediction results are

compared to the actual results to build a classification matrix (after a threshold percentage

has been applied).

2.3.2. Bayesian Networks

The foundation for Naive Bayes (Cetinkaya-Rundell, 2017) is the Bayes rule named after

Thomas Bayes (1702-1761) which provides the logic for conditional probability. The Naive
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Bayes algorithm can be built manually and is the ratio of two frequencies. The essence

of Bayes rule is:

Pr(A|B) = Pr(B|A) Pr(A)
Pr(B)(2.5)

A and B are both events. The probability of Event A is measured by the condition that

event B has already occurred; see figure 2.5. The probabilities of the Bayesian network

tree are captured in the classification table after stepping through the Bayesian logic; see

figure 2.6.

Figure 2.5. Steps of a Bayesian network example; posterior probabilities

A check on whether the logic was followed is that TP and FP, as well as TN and FN

should both equal to one. If another test is conducted after the posterior probabilities

test, the results from TP and FP are transferred to the next series of steps called prior

probabilities since they are based on the previous test.
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2.3.3. Decision Trees - RPART recursive partitioning

Ross Quinlan discovered IDE in 1984 (Quinlan, 1986) which is a top down decision tree.

Recursive partition (Lavrenko, 2014) decision trees select the best or significant variables

that are chosen for splits based on the response variable then iteratively selects each

variable in a divide and conquer manner splitting the data into subsets until no more

splits are possible. The weaknesses are that the trees require active pruning of leaves to

obtain the best mode and there is also a tendency of over fitting the data.

Entropy and information gain measure uncertainty and confidence respectively select-

ing the best decisions that don’t grow the tree too large or over fit the data. In entropy

uncertainty is measured by how pure the node is, that is it can not be split further.

Entropy = H(X) = −
n∑

i=1
p(xi) logb p(xi)(2.6)

The bits needed to measure which subset to make the split is quantified through

information gain or Gain (S) from the entropy formula which measures the change from

a given set and a class. The entropy formula and confidence level from the information

gain determine whether it is better before or after the split. If there is an information

gain, the node is retained otherwise it is pruned.

2.3.4. Support Vector Machines

Support Vector Machines seek to find a plane that separates the classes (James et al., 2013)

which is a concept that was first introduced by Vladimir Vapnik Ph.D in 1990. Twenty
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years after it was introduced it is commonly accepted as one of the best classification

methods.

The goal is to design a hyperplane to separate a binary classifier labeled as positive

or negative points; see figure 2.7.

bluehyperplane = b0+b1X1+b2X2+...+bpXp = 0(2.7)

A blue hyperplane that separates the classes is equal to 0 (see blue line in figure 2.7)

with the hyperplane in red orthogonal to it. The points on the red hyperplane, to the

right side of the blue hyperplane, are greater than or equal to one with the points on the

left side being less than or equal to -1 therefore showing the separation of the classes. The

best decision rule leaves the maximum margin between the classes using a constrained

optimization problem.

Figure 2.6. Blue and red hyperplanes
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2.3.5. Neural Networks

Artificial neural networks are non-linear regression learning algorithms that process in-

formation in the same way biological nervous systems work (Stergiou & Siganos ,2017).

Supervised learning associates the output pattern with the input pattern whereas in un-

supervised learning the out pattern is not introduced into the algorithm (Jha, 2007).

In ANN, the neurons are interconnected solving problems through pattern recognition.

A task is learned by providing a dataset for the purpose of recognizing the structure in the

data without comparing it to known patterns such as in supervised learning. Unconven-

tional pattern recognition areas such as image, text and speech recognition are uniquely

well suited to being solved using ANN’s. Neural networks can also solve conventional

issues such as classification problems. A series of feature extractions results in a clas-

sification tree of attributes. The inputs and outputs match the dimensions of the data

Figure 2.7. Simple neural network (Srivastava, 2014)
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(Welch, 2014). The synapses take values from the input then multiply them by weights

to get an output value. The neurons add together the output from all the synapses. The

input data is scaled (normalized) so that there is a standard relationship between the

input and output variables. Vector and matrix multiplication is used to speed up the

process with multiple inputs handled at the same time. This is the first pass through

without training the model. Next the cost function is applied to minimize the errors.

e = (y − yhat)(2.8)

cost =
∑ 1

2(y − yhat)2(2.9)

The final model finds the point where the cost is minimized. This process is called

gradient descent. ANN’s tend to overfit the training data which makes them less useful

for predictive analytics (Srivastava, 2014); see model result output charts.

2.3.6. Deep Learning

Deep Learning uses non-linear regression modeled on artificial neural networks. It is an

unsupervised, feature learning, self-taught learning representation with the output not

present in the algorithm (Ng, 2016). Andrew Ng noted that researchers have found that

experiments isolating brain functions and sensory skills which show that the brain may

have one way to learn. This analysis was used in training a learning algorithm. The

relation to the neural network is that the hidden belief layer (see figure 2.8 above) is

enhanced in multiple layers in a progressive recursive function to gain learning patterns

successively from the data. For example, training to recognize images starts by inputting
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pixels, finding the edges of the pattern in the first hidden layer, finding larger object

parts using the information from the previous edge finding pattern, then find the whole

picture image with the previous patterns before using vector and matrix calculation to find

the yhat output. These calculations are computationally intensive and require parallel,

distributed, or cloud based processing. The results indicate that Deep Learning is out

pacing any other previously discovered algorithms by improving the accuracy rate and

conversely reducing the misclassification rate. The deep learning algorithm, gbm_h2o,

uses an ensemble method combining the gbm stochastic gradient ensemble method as the

recursive routine managing the deep belief learning functionality.

2.3.7. Ensemble Methods

2.3.7.1. Bagging, Random Forests and Adabag. Bagging is short for bootstrap

aggregation. The bootstrap method divides the dataset randomly into subsets with re-

placement which will have data entries duplicated in more than one model. A full dataset

trains a base learner (Wang et al, 2011). One of the subsets is held out for validation

purposes. Each subset model is then trained and measured with the final model being

a majority vote measured in the metrics indicated (such as accuracy or AUCROC for

example) of all the models reducing variance error. Bagging is useful if learned classifiers

are affected by small changes in the dataset (Breiman, 1994).

Although bagging improves performance, it has a tendency to overfit with too large

trees (Kraus, 2014). It shouldn’t be used with too few trees as parameters because every

input row gets used too many times. The advantages are that less variable selection is
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needed and few parameters need to be tuned, as well as being useful with smaller datasets.

2.3.7.2. Boosting. Weak classifiers, with higher error rates that are no better than

random sampling (less than 50%), are combined by reweighting then voting is applied

to make a strong classifier. The dataset is divided into subsets with replacement. Each

new subset trains previously identified weaker classifiers weighted higher and stronger

classifiers weighted lower. Based on the tree number selected, additional trees are built

but now the higher weighted samples are forced to learn better until an equilibrium is

achieved where all the learners have higher than the 50% requirement rate (Ray, 2015).

Training on multiple training sets with replacement ensures that patterns of overfitting

do not occur (Daumé III, 2012).

Combining, blending or stacking ensembles use "before the fact" techniques (LeDell,

2015).

2.3.7.3. Stacking. The least correlated models can be combined to improve the classifi-

cation categorization. The theory is to use a majority voting method to increase accuracy

using a combination of bagging and boosting voting. The strengths and weaknesses in

each model are weighted which promotes the weak classifiers and demote the stronger

classifiers in each resampling round which focuses the algorithm to fix misclassifications.

Only models that improve the overall accuracy are included reducing measurement errors

(Ray, 2015) with blending favoring models that are the least correlated. The combined

model should therefore outscore the individual model metrics (Zhu, 2001) since the en-

semble method complements their opposite strengths (Lee and Jung, 1999/2000).
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The modeling phase first evaluates within then between models. Greater accuracy

often comes with increased complexity and loss of transparency. It would be helpful to

answer the question, can enough information be gained during the validation and evalu-

ation process that developers can provide stakeholders so they have greater confidence in

selecting more complex models?

2.4. Technical Issues

Starting the comparative analysis process became somewhat complicated in the R

environment because many packages have the same function name but had unique input

and output criteria that became a challenge. This is a natural outcome of an open source

environment that enables many contributions from multiple sources without having an

overall design road map or process to ensure uniform requirements for submission.

Specifically the main problem was the inconsistent syntax for the algorithm inputs.

Figure 2.9 displays several R library versions of the predict function, each of which expects

different input types and variables. One of the ways to get around the problem is to read

Figure 2.8. Classification algorithm function syntax comparison

in the required library into Rstudio right before the specific predict function is needed

which enables the developer to know the version that is currently in the R environment,
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however with multiple predict algorithms being read into memory for different functions

requires an ongoing road map of which function is being used at any given time. The

problem was solved at the Pfizer Global Research and Development Nonclinical Statistics

Department in 2005 while addressing problems their modeling teams encountered during

the development process. The package they created is called ’caret’ (Classification And

REgression Training), an R package maintained by Max Kuhn. It has a unified interface

for predictive models, streamlines tuning and increases efficiency with options to use par-

allel or distributed processing (Kuhn, 2014). The Applied Predictive Modeling textbook

was written to explain how to use the library (Kuhn, Johnson, 2013). The first caret

package was published in the Cran R repository in October 2007.

The solution was to write a wrapper around algorithms. The wrapper design created

conformity of input types and parameters. Tuning and optimization parameters were

added to support improvements. The architecture was written to accept the original

library algorithm names which helped users have confidence in the new wrapper functions.

The caret package supports a long list of well-known library algorithms including all the

model types selected for this study. Therefore all models were built using the caret

wrapper functions. By using a single source library it enabled greater comparability of

model results since each model was treated in a similar fashion.
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CHAPTER 3

Evaluation Criteria and Metrics Determining Goodness of Fit

Developing the testing strategy is directly tied to the data structure. If the goal of

predictive analytics is to find the best and most accurate model, predefining and un-

derstanding the metrics that measure these qualities is an effective way to determine

the goodness of fit of each model selected for testing. The development strategy should

identify issues that may need an alternative testing path.

Performance evaluates the model goodness of fit to the structure and patterns in the

data that generalizes to a new data source. The fundamental question is which are the

best metrics to measure the performance of a binary classifier? The most commonly used

metrics are Accuracy and AUCROC. When comparing models for selection, which of these

metrics is better? Each is constructed from a different premise measuring distinct aspects

of the same details (Shahram, 2016). The primary determinant in deciding whether to

choose a metric is based on the business purpose, the structure of the data, and the balance

of the classes. AUCROC is not as useful with imbalanced classes. There is no absolute

ranking of the usefulness of metrics as much as a need to understand their composition

and benefits based on the structure of the data. No single metric can help select a model

(Brownlee, 2014). Another key issue to address is imbalance in the classifier mainly

because the test strategy takes a dissimilar path depending on the degree of imbalance.

The choice of metrics is also dependent on this knowledge.
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3.1. Which metrics to use?

There are threshold and non-threshold based metrics represented by classification

and the Receiver Operating Curve (ROC) respectively. The initial response observations

and the results of the modeling and prediction functions build a classification table of

categories after a threshold has been applied to the prediction results using a single optimal

cutoff threshold. The Receiver Operating Curve uses the entire threshold range to build

the ROC curve (Shadram, 2016) which is literally represented by as many classification

tables as there are threshold values. Many factors can influence classification results

including the available data, data variables, data cleansing, and model algorithm selected

(Jeatrakul et al., 2001).

3.2. Classification Matrix

The classification matrix includes the actual observations in the historical data rep-

resented by whether a customer repays obligations translating into a credit rating paired

with a prediction whether the event may occur. A credit risk binary classifier labels the

non-event of a good credit risk as 0 or in the case of default, the event occurred, the credit

risk response variable gets a bad rating value of 1.

Figure 3.1. Classification Matrix (aka confusion matrix)
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Predictions are created when the model is trained and finds patterns in the dataset

which are indicators of good or bad ratings; see figure 3.1. The prediction is run on new

test data with the algorithm returning results as the probabilities of creditworthy ratings.

If the model patterns generalize well for the new data then the information is useful for

analysis.

In step 1, the probability results from the predict function are compared to the hurdle

rate which is 50 percent in this case. If the probability > .50, the prediction is considered

a positive prediction and given a value of 1. If less than the hurdle rate, its value is 0 or

a negative prediction. In step 2, the observed value and newly created predict value are

compared. If the observed is 1 and it’s prediction is 1 then the category it is placed in is

the true positive or TP class.

Figure 3.2. Conversion legend for classification matrix decisions
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Correct ratings:

TP Customer defaulted, correctly predicted default; actual 1, pred 1

TN Customer didn’t default, correctly predicted no default; actual 0, pred 0

Incorrect ratings:

FP Customer didn’t default but incorrectly predicted to default; actual 0, pred 1

FN Customer defaulted but was incorrectly predicted no default; actual 1, pred 0

Type I Error - (FP/(FP+TN) or FP/actual no)

Medicine - Patient doesn’t have cancer but is incorrectly predicted to have cancer. Un-

necessary operation may occur without a second opinion. Real harm.

Credit - Customer didn’t default but incorrectly predicted to default. Loan was not given

with potential loss of interest revenue.

Fraud - Fraud did not occur but was incorrectly predicted to occur. If not properly han-

dled, there is a legal risk of reputation damage to the organization and to the accused if

treated as an actual fraud.

Type II Error - (FN/(FN+TP) or FN/actual yes)

Medicine - Patient has cancer but the test incorrectly predicts no cancer. Without a

second opinion, a patient may not get needed treatment. Real harm.

Credit - Customer defaults but was incorrectly predicted not to default. Loan was given

with the potential loss of the principal and interest revenue.
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Fraud - Fraud did occur but the test incorrectly predicts no fraud. Fraud undetected.

Accuracy measures the diagonal of TP (observed event occurred and was predicted

correctly) and TN (observed event did not occur and was predicted correctly). The false

positive and false negatives contribute to the misclassification rate. When real scenarios

are applied to the misclassification rate, it becomes apparent the damage that can occur

by not reducing these rates as much as possible. The severity of the risk is very specific

to the application.

The goal for selecting the best machine learning algorithm is not just to maximize clas-

sification but also to minimizing misclassification that could cause harm, damage or loss.

To achieve this level of refinement requires increases in optimization and improvements

in tuning of models. A key factor in model selection and interpretation is the tolerance

level for misclassification. The field of medicine has a very low tolerance since Type I and

II errors both have possible human toll. The credit industry is harmed in Type I errors

but Type II errors are categorized as a missed opportunity. Marketing may have a higher

tolerance since business decisions regarding cutoff values often are based on the marketing

budget which may limit project scope rather than the need to maximize the classification

metrics. The cost due to fraud focuses on both Type I and II errors while mitigating

damage by establishing a thorough review process for all FP classifications, as well as

having a policy that understands that predictive analytics does not identify fraud rather

finds patterns in the data that may confirm indicators for further investigation. Ratios

created from the table build metrics which explain the details of the model predictions.
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Accuracy ((TP+TN)/Total) measures the percentage of positive predictions correctly

classified. Issues arise with imbalanced classes where the frequency of the minority class

is not equally represented, as well as the fact that neither the false positives nor false

negatives are included in the ratio. It measures a minimum requirement. It should not

be used with imbalanced classes. In this case, using the Kappa statistic is more relevant

(Shahram, 2016), as well as precision and recall which are more discriminating. The Ac-

curacy Paradox (Descoins, 2013) points out that the ratio can be misleading if TN < FN

and TP < FP.

Misclassification ((FP+FN)/Total) is the percentage of negative predictions incorrectly

classified.

Sensitivity, Recall, TPR (TP/(TP+FN) or TP/actual yes) calculates the proportion

of positives correctly predicted. The preference is to have a low value. The TPR, true

positive rate, is used as the y axis of the ROC curve. It does not include TN’s. When

TN’s are not meaningful, use precision and recall. Use it when the TP benefit is high. If

low then FN are high.

Specificity, TNR (TN/(FP+TN) or TN/actual no) calculates the proportion of nega-

tives correctly predicted. The preference is to have a high value. Without TP and FN,

the ratio is less useful for imbalanced classes.
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FPR (FP/(FP+TN) or FP/(actual no) aka (1 - Specificity)) is the false positive rate or

the positive predictions incorrectly classified. FPR is used in the x axis of the ROC curve.

Specificity = TN/(FP + TN) = 1 - FPR

Specificity + FPR = 1 + (- FPR + FPR) (FPR cancels out)

Specificity + FPR = 1

Specificity + FPR - Specificity (specificity cancels out) = 1 - Specificity

FPR = 1 - Specificity

FNR (FN/(TP+FN)) or FN/(actual yes) is the false negative rate or the negative pre-

dictions incorrectly classified.

Precision, PPV (TP/ (FP+TP) or TP/(predicted yes)) measures the percentage of

positive predictions over the total of correctly predicted or when correct how often. Use

when the cost of a FP is high. If low then FP are high. It is a measure of exactness. It

does not include TN’s. When TN’s are not meaningful, use precision and recall.

Troubleshooting - use TPR, TNR, FPR and FNR that independently test positive and

negative classes (López el al, 2013); see Appendix Summary of classification metrics for

details.

If avoiding FP, find the result of false negatives (FN) while not using metrics with

false negatives.
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If avoiding FN, find the result of false positives (FP) while not using metrics with false

positives.

The end goal of using metrics is to thoroughly interpret and improve classification while

reducing misclassification rates. Optimization enhancements can be made by changing the

variables in feature selection, optimizing model tuning to select the best model, improv-

ing the quality and increasing the volume of data, as well as changing the cutoff thresholds.

3.3. Receiver Operating Curve and AUCROC

Receiver operating curve (ROC) uses TPR (Sensitivity) and FPR (1-Specificity) met-

rics as the y and x axes of the ROC curve. The area under the curve (AUCROC) quantifies

the ROC curve performance and summaries Accuracy for the entire test result outcomes

which represent the threshold range (Fawcett, 2005).

Figure 3.3. Visualizing ordered obs. and predicted probabilities (medcalc)

The area under the curve quantifies all the changes that occur along the threshold

range. It is normally shown as a smooth curve but which actually represents each point

based on the classification table range of possibilities; see figure 3.3. Figure 3.4 displays

an example where 82 applicants were predicted to default.
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Figure 3.4. Classification matrix with 82 defaulters in test set of 400 records

What is the point on the ROC curve? Given a Sensitivity (TPR) of .68 and a FPR

value of .34, the point on the curve is (FPR=.34, TPR=.68). The optimal cutoff is where

Sensitivity is relatively equal to Specificity. The diagonal line from (0,0) to (0,1) is the 50

percent threshold representing random selection. Every point on the ROC curve is plotted

based on a FDR (1-Specificity) and TPR (Sensitivity) pair; (x=FDR, y=TPR); see figure

3.5. The optimal cutoff threshold is where Sensitivity and Specificity are relatively equal.

The following gauges the Area under the curve, the integral of x and y (Cornell, 2003):

AUCROC >= 0.9 outstanding discrimination or over fit

0.8 <= AUCROC < 0.9 excellent discrimination

0.7 <= AUCROC < 0.8 acceptable discrimination

0.5 = AUCROC, no discriminatory power or equal to a random case

AUCROC < 0.5 is worse than random case

The AUCROC is not considered one of the most discriminating metrics (Wu, Lee,

2014). Medical researchers have noted that the AUCROC is insensitive to the introduction

of strong markers in diagnostic testing.

Several other metrics have been proposed including the Gini index. Researchers in

medicine and science use the classification matrix and ROC curve in their work long
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Figure 3.5. ROC curve example for point (FPR,TPR)

before predictive analytics adopted their measurement standards. Medicine and science

are the most sensitive to the influence of Type I and II errors while having the greatest

need to reduce any harm that may occur based on their diagnostic results. Using their

cutting edge research can help provide more discriminating metrics into the field of data

science.

3.4. Testing Summary

The test results will be reviewed for AUCROC, Accuracy and Type I and II errors:
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AUCROC) TPR (TP/(TP+FN) or TP/(actual yes)) and FPR ((FP/(FP+TN) or FP/(actual

no) aka (1-Specificity)) is the integral, area under the curve, of the entire range of thresh-

olds and is measured by both misclassification and accuracy metrics.

Accuracy ((TP+TN)/total) is based on a single threshold initial decision to maximize

the classification table and uses no misclassification metrics.

Type I Error - (FP/(FP+TN) or FP/actual no)

Type II Error - (FN/(FN+TP) or FN/(actual yes)

By focusing on the misclassification metrics, FP and FN, it is possible to identify

where improvements need to be made. This example demonstrates that what may have

appeared to be a harmless high FP result has a false discovery misclassification rate of 54

percent; also see figure 3.6 for examples of misclassification metrics.

Defaulters TP (correctly predicted to default) = 82

FP (incorrectly predicted to default)= 96

Total predicted yes (TP+FP) = 178

false discovery rate = FP/ predicted yes = 96/178 = 54 percent
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Figure 3.6. Misclassification metrics

3.5. Class Imbalance

The definition of a class imbalance has a large and disproportional difference in the

frequency of classifiers which often occurs in fraud risk scoring projects due to the lower

incidence of fraud events to the general population of the dataset (Akosa, 2017).

Prior probabilities describe inherent probabilities prior to testing with the assumption

that when dividing into two classes a relatively equal number of entries will be distributed

into each class as the number of entries grows larger with the random probability of 50/50

for each occurrence. An unequal distribution with one class having a higher proportion

of the distribution causes metrics to be misrepresentative (Monard & Batista, 2003).

Imbalanced classes are biased in the direction of the majority class which increases

misclassification rates (López el al, 2013). Solutions to address class imbalance include

data sampling, algorithm modification and cost sensitive learning. AUCPR, integral of

recall and precision, is promoted as the best single classifier metric to measure imbalance.

When measuring the minority class (event of default) in the focus of study, there is a

fundamental bias toward the majority class which reduces the effectiveness of classification

metrics which are then less reliable. Weighting or modifying sampling methods help to
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correct class imbalance (Akosa, 2017). Majority voting weighting solutions include cost

sensitive training or learning what weights misclassification higher for the purpose of

minimizing cost. Other options are down sampling or oversampling. Under sampling

occurs when the majority class samples are reduced artificially. Over sampling seeks to

correct class imbalance across by duplicating the minority class data.

At what point does a class imbalance require a change in metrics? According to Tom

Fawcett (Fawcett, 2016), adjustments are needed if the range of data imbalance is less

than 10-20 percent which is not the case for either the Australian or German datasets.

Since class imbalance is a major factor in fraud cases, the topic has been included to

provide a background for future development.
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CHAPTER 4

Results

The test process was conducted in a series of trials in order to find the affects of the

metrics (Accuracy, AUCROC, Type I and II errors) in ranking models for selection.

Test 1: examines the metrics and how they were applied to 9 models

Test 2: searches for correlations between the 6 base learners for the purpose of finding the

most and least correlated pairs to create strong and weaker pairs respectively from which

16 stacked models will be developed.

Test 3: displays the magnitude difference in metrics for each model in graphical form.

Test 4: ranks all 25 models by AUCROC, Accuracy, and Type I and II errors for model

selection.

The result of both the German and Australian datasets would be examined for how

their test results were similar or dissimilar. What are the generalizations that can be

made and what are the factors to consider in model selection?
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4.1. Result and Summary tables

Test 1: Comparing the ranking of models while testing for significant metrics develops a

starting hypothesis for metric application.

Figure 4.1. Australian dataset - initial ranking by metrics

Figure 4.2. German dataset - initial ranking by metrics

The results revealed that sorting by AUCROC and Accuracy didn’t change model

ranking, however Accuracy or AUCPR alone listed the models differently; see figures 4.1
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and 4.2. The metrics will be reviewed first AUCROC then Accuracy then appraise the

Type I and II errors.

Test 2: The 6 base learner model were compared against each other for correlations; see

figures 4.3 and 4.4.

Figure 4.3. ACC Correlations between 6 base learners

Figure 4.4. GCC Correlations between 6 base learners

The strong learner1 and weak learner2 for both the Australian and German Credit

datasets were the same.
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Test 3: Metrics were graphed for all models displaying the magnitude of difference for each

metric separately. This barplot effectively shows the changes in metrics in the ranked list

of models and specifically for the Type I and II errors; see figures 4.5 and 4.6.

Figure 4.5. ACC magnitude of classification vs misclassification metrics
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Figure 4.6. GCC magnitude of classification vs misclassification metrics

The ACC models were more effective based on the reduced number of Type I and II

errors.

Test 4: The final test ordered all 25 models by AUCROC, Accuracy, and Type I and

II errors for model selection; see figures 4.7 and 4.8. The Support Vector Machine had

the highest AUCROC and Accuracy metrics with the lowest Type I and II errors. Each
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dataset had different results for the rest of the 24 of the 25 models except that the 16

stacked models were in the top 17 models for both data sources.

Figure 4.7. ACC model performance comparison
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Figure 4.8. GCC model performance comparison
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CHAPTER 5

Model Selection

The datasets performed quite differently except for the SVM being selected the top

model in both. The question is why the performance was so inconsistent? Classification

performance is based on how well the algorithms generalize the data structure. The two

datasets differed in class balance, number of entries, and data structure which is reflected

in the metrics. The Australian dataset which had 690 entries with a relatively equal class

balance rated better consistently with reduced Type I and II errors over the German

dataset of 1000 entries and a 30/70 percent class balance. The model performance is also

determined by the choice of variables selected and values included in the dataset which

are direct causal relationships to the response binary risk scoring classifier.

Logistic Regression was 19th of 25 models for both datasets. In the German dataset,

randomForest stacked models were in 3 of the top 4 of best models with the Australian

stacked models showing boosting in 3 of the top 4 of best models. The strong and weak

learners were inconsistent in performance for both models other than being in 16 of the

top 17 models for both the German and Australian datasets.

Once AUCROC ranking was sorted, any additional sorting for the Type I and II errors

was not necessary for both datasets. A review of Precision and AUCPR did not prove to

be helpful.
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5.1. Next Steps

The initial study was based on creating a new fraud risk scoring application, however

building a new dataset proved to be a daunting task because it would have to reflect a

significant amount of application experience to build and calibrate the source data in a

field that does not yet exist. As a result, the Australian and German credit risk scoring

datasets were substituted. Critical issues to be researched in each dataset are class im-

balance, optimal cutoff points, reducing misclassification rates, improving validation and

resampling methods, using different languages and platforms that meet client require-

ments, managing parallel and/or distributed processing needed for the computationally

intensive ensemble models with cloud environment options, and including the addition of

other measurements such as Kappa statistics, Gini Index, and false discovery and detec-

tion error rates.

In a separate parallel study, the work completed on the business aspect of the new risk

scoring application proved to be very useful since a creative way was found in extending

the range of the binary risk classifier while adding significantly greater utility to the

application itself. Even though there is less imbalance with a creative solution, risk

scoring classifiers are by nature imbalanced and require building a toolkit and methodology

enabling rebalancing.

Other ensemble methods may be useful in working with class imbalance (Galara et al.,

2013) as a viable option to current methods. The EUSBoost algorithm, AdaBoost.M2,

is a later version of Adaboost.M1 (RUSBoost) used in this study. The algorithm uses

random undersampling for preprocessing prior to using EUSBoost.
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CHAPTER 6

Conclusion

The main goal of this study was to optimize classification performance for risk scoring

applications by thoroughly reviewing the elements of the metrics used to measure im-

provements, experimenting with ensemble stacking methods to reduce misclassification,

and developing a test strategy to monitor where the metrics were changing in order to be

able to select the best model.

The Support Vector Machine outperformed all other models, however each dataset

ranked the rest of the 24 models very differently. Since the model generalizes the data

structure, how the specific dataset characteristics can account for their performance is the

question. Is it the class imbalance, the number of entries, the data structure itself, the

variables selected, data preprocessing or model tuning?

The performance of the stacked models was similar for each data source ranking 16

of the stacked models in the top 17 best models but very inconsistent for specific model

ranking.

A note about Logistic Regression since it is very likely the most common algorithm

in the business market place. It did not fare well in the base model comparison as 19th

out of 25 ranked models for both data sources. Logistic Regression coefficients are used

in the risk scorecard development. The model’s ranking will have a strong effect on the

confidence level of the final scorecard.
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There is another dimension to model selection which brings into the equation the

volume of data and model selection order. With a greater volume of data, algorithms have

an increased opportunity to find the real pattern in the data structure (Ng, 2013 and 2016).

According to Ng, each new paper on algorithm improvement that succeeds the previous

paper’s performance may actually prove to be based on the increased volume of data

used in model testing. This hypothesis does examine the essence of what is really being

tested during research which is conducted in a development environment with engineered

test datasets with sizes that are smaller than a normal deployment environment. The

awareness that development and deployment dataset sizes and complexity actually are

a factor in model performance increases the need to follow up research findings when

recommendations are actually deployed. The feedback from deployment could provide

invaluable information regarding the model selection process. Each production dataset

is unique which does not provide information for generalization. The feedback would be

very useful for the broader understanding of algorithm comparative analysis, the factors

to be reviewed and considered, as well as their effects on the process.

The model results in this study showed that the performance ranking of model al-

gorithms for finding the generalized pattern of the dataset should be based on empirical

methods closely examining the changes in key metrics rather than on research assumptions

for model selection.

The key implication in performance optimization is the creation of more efficient pre-

dictions that can then be prescribed back into an organization as insights. In fields such

as fraud where imbalanced classes are inherently an issue to be addressed, finding effec-

tive tools to balance classes is currently a considerable modeling challenge. Other areas
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for future work include finding optimal threshold cutoffs and using more discriminating

metrics (such as Kappa statistics, Gini Index, Precision and AUCPR, for example) that

are required to maximize performance when the class balance is more skewed.
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APPENDIX A

Classification metric summary table

Figure A.1. Summary of classification metrics
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APPENDIX B

Australian dataset variables

A1: 0,1 CATEGORICAL (formerly: a,b)

A2: continuous.

A3: continuous.

A4: 1,2,3 CATEGORICAL (formerly: p,g,gg)

A5: 1, 2,3,4,5, 6,7,8,9,10,11,12,13,14 CATEGORICAL (formerly: ff,d,i,k,j,aa,m,c,w,

e, q, r,cc, x)

A6: 1, 2,3, 4,5,6,7,8,9 CATEGORICAL (formerly: ff,dd,j,bb,v,n,o,h,z)

A7: continuous.

A8: 1, 0 CATEGORICAL (formerly: t, f)

A9: 1, 0 CATEGORICAL (formerly: t, f)

A10: continuous.

A11: 1, 0 CATEGORICAL (formerly t, f)

A12: 1, 2, 3 CATEGORICAL (formerly: s, g, p)

A13: continuous.

A14: continuous.

A15: 1,2 class attribute (formerly: +,-)
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APPENDIX C

German dataset variables

Attribute 1: (qualitative) Status of existing checking account

A11 : ... < 0 DM

A12 : 0 <= ... < 200 DM

A13 : ... >= 200 DM / salary assignments for at least 1 year

A14 : no checking account

Attribute 2: (numerical) Duration in month

Attribute 3: (qualitative) Credit history

A30 : no credits taken/ all credits paid back duly

A31 : all credits at this bank paid back duly

A32 : existing credits paid back duly till now

A33 : delay in paying off in the past

A34 : critical account/ other credits existing (not at this bank)

Attribute 4: (qualitative) Purpose

A40 : car (new)

A41 : car (used)

A42 : furniture/equipment

A43 : radio/television

A44 : domestic appliances

A45 : repairs
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A46 : education

A47 : (vacation - does not exist?)

A48 : retraining

A49 : business

A410 : others

Attribute 5: (numerical) Credit amount

Attribute 6: (qualitative) Savings account/bonds

A61 : ... < 100 DM

A62 : 100 <= ... < 500 DM

A63 : 500 <= ... < 1000 DM

A64 : .. >= 1000 DM

A65 : unknown/ no savings account

Attribute 7: (qualitative) Present employment since

A71 : unemployed

A72 : ... < 1 year

A73 : 1 <= ... < 4 years

A74 : 4 <= ... < 7 years

A75 : .. >= 7 years

Attribute 8: (numerical) Installment rate in percentage of disposable income

Attribute 9: (qualitative) Personal status and sex

A91 : male : divorced/separated

A92 : female : divorced/separated/married

A93 : male : single



69

A94 : male : married/widowed

A95 : female : single

Attribute 10: (qualitative) Other debtors / guarantors

A101 : none

A102 : co-applicant

A103 : guarantor

Attribute 11: (numerical) Present residence since

Attribute 12: (qualitative) Property

A121 : real estate

A122 : if not A121 : building society savings agreement/ life insurance

A123 : if not A121/A122 : car or other, not in attribute 6

A124 : unknown / no property

Attribute 13: (numerical) Age in years

Attribute 14: (qualitative) Other installment plans

A141 : bank

A142 : stores

A143 : none

Attribute 15: (qualitative) Housing

A151 : rent

A152 : own

A153 : for free

Attribute 16: (numerical) Number of existing credits at this bank

Attribute 17: (qualitative) Job
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A171 : unemployed/ unskilled - non-resident

A172 : unskilled - resident

A173 : skilled employee / official

A174 : management/ self-employed/highly qualified employee/ officer

Attribute 18: (numerical)

Number of people being liable to provide maintenance for

Attribute 19: (qualitative) Telephone

A191 : none

A192 : yes, registered under the customers name

Attribute 20: (qualitative) foreign worker

A201 : yes

A202 : no
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